Around 15-17 million tons of this volcanic material spread into a lazy haze covering much of the
globe. During the following 15 months, scientists discovered a second surprise: this particle cloud had formed a protective sun-shield, reflecting a significant proportion of the sun’s rays back into space. As a result, the average global temperature that year dropped by 0.6C. And for some researchers, that raised an interesting possibility. Could we do this on purpose, deliberately producing artificial clouds to reduce global warming?
Since Pinatubo, there have been many suggestions for artificial reflective surfaces: launching mirrors into space to orbit around the earth; building wind-powered ice machines over the Arctic, or scattering it with trillions of silica beads. One Peruvian scheme even painted the tops of mountains white to replace retreating glaciers. Clouds, however, naturally reflect the sun (it’s why Venus – a planet with permanent cloud cover – shines so brightly in our night sky). Marine stratocumulus clouds are particularly important, covering around 20% of the Earth’s surface while reflecting 30% of total solar radiation. Stratocumulus clouds also cool the ocean surface directly below. Proposals to make these clouds whiter – or “marine cloud brightening” – are amongst the more serious projects now being considered by various bodies, including the US National Academies of Sciences, Engineering, and Medicine’s new “solar geoengineering” committee.
Stephen Salter, Emeritus professor at the University of Edinburgh, has been one of the leading voices of this movement. In the 1970s, when Salter was working on waves and tidal power, he came across studies examining the pollution trails left by shipping. Much like the aeroplane trails we see criss-crossing the sky, satellite imagery had revealed that shipping left similar tracks in the air above the ocean – and the research revealed that these trails were also brightening existing clouds.
The pollution particles had introduced “condensation nuclei” (otherwise scarce in the clean sea air) for water vapour to congregate around. Because the pollution particles were smaller than the natural particles, they produced smaller water droplets; and the smaller the water droplet, the whiter and more reflective it is. In 1990, British atmospheric scientist John Latham proposed doing this with benign, natural particles such as sea salt. But he needed an engineer to design a spraying system. So he contacted Stephen Salter.
I didn’t realize quite how hard it was going to be,” Salter now admits. Seawater, for instance, tends to clog up or corrode spray nozzles. And that’s not to mention the difficulties of modelling the effects on the weather and climate. But his latest design, he believes, is ready to build: an unmanned hydro-foil ship, computer-controlled and wind-powered, which pumps an ultra-fine mist of sea salt toward the cloud layer.
Salter calculates that a fleet of 300 of his autonomous ships could reduce global temperatures by 1.5C. He also believes that smaller fleets could be deployed to counter-act regional extreme weather events. Hurricane seasons and El Niño, exacerbated by high sea temperatures, could be tamed by targeted cooling via marine cloud brightening. A PhD thesis from the University of Leeds in 2012 stated that cloud brightening could, “decrease sea surface temperatures during peak tropical cyclone season… [reducing] the energy available for convection and may reduce intensity of storms”.
Salter boasts that 160 of his ships could “moderate an El Niño event, and a few hundred [would] stop hurricanes”. The same could be done, he says, to protect large coral reefs such as the Great Barrier Reef, and even cool the polar regions to allow sea ice to return.
So, what’s the catch? Well, there’s a very big catch indeed. The potential side-effects of solar geoengineering on the scale needed to slow hurricanes or cool global temperatures are not well understood. According to various theories, it could prompt droughts, flooding, and catastrophic crop failures; some even fear that the technology could be weaponised (during the Vietnam War, American forces flew thousands of “cloud seeding” missions to flood enemy troop supply lines). Another major concern is that geoengineering could be used as an excuse to slow down emissions reduction, meaning CO2 levels continue to rise and oceans continue to acidify – which, of course, brings its own serious problems.
Her team’s design is similar to commercial snow-making machines for ski resorts, yet capable of spraying “particles ten thousand times smaller [than snow]… at three trillion particles per second”. The MCB Project hopes to test this near Monterey Bay, California, where marine stratocumulus clouds waft overland. They would start with a single cloud to track its impact.
“One of the strengths of marine cloud brightening is it can be very gradually scaled,” says Wanser. “You [can] get a pretty good grasp of whether and how you are brightening clouds, without doing things that impact climate or weather.”
Such a step-by-step research effort, says Wanser, would take a decade at least. But due to the controversy it attracts, this hasn’t even started yet. Not one cloud has yet been purposefully brightened by academics – although cargo shipping still does this unintentionally, with dirty particles, every single day.
The danger, however, is that solar geoengineering will be eventually called upon as a last chance solution, without the initial research to understand the side effects. “The risks tend to increase the more heat you’re trying to offset,” she says. “The more particles you have to put in, the more likely the side effects are stronger and the risks are greater… this research takes time, and at this point, we can’t even tell you we can build a sprayer that gets these particles to the clouds.”
There is another approach to solar radiation management that shares the benefits – and the risks – evenly across the globe. Stratospheric aerosol scattering (SAS) is more analogous to Mount Pinatubo: instead of spraying aerosols into the lower atmosphere, you scatter them 10km above the clouds. This suspended, almost static veil of particles – too thin to be visible from the ground – would reflect a proportion of sunlight back into space. Computer modelling by the US National Center for Atmospheric Research in 2017 suggested that for every teragram of particles (one trillion grams – roughly the mass of the Golden Gate Bridge) injected in the atmosphere, a global average temperature reduction of 0.2C could be achieved.
Once again, the consequences are unknown: it’s not clear what impact this strategy would have on the weather systems below, or on the ozone layer directly above it. Unlike a brightened cloud at sea, which may last for three days, an artificial stratospheric layer would likely linger – like the Mount Pinatubo eruption – for up to two years.
Harvard's Solar Geoengineering Research Program are leading the work on SAS. Elizabeth Burns, its program director said, “solar geoengineering could only be a potential complement to emissions reduction. It could not replace those efforts”. This is no “quick fix”, she says. “We really do need to reduce emissions to zero if we want to address climate change.”
There are many preferable ways to reduce climate change than solar geoengineering. Planting trees – reforesting – is a proven, conservation-friendly method of taking carbon out of the atmosphere. A rapid transition from fossil fuels to renewable energy would tackle the source of emissions. But neither are happening fast enough. Perhaps, if nothing else, even contemplating solar geoengineering may be enough to shock governments into rapid emissions reduction.
“We are doing an intervention [already] into our atmosphere in an unprecedented way [through fossil fuel and CO2 emissions],” continues Burns. “We have something that could potentially help with some of the symptoms, albeit not the cure… it is such an important topic globally that we need to start thinking about it.”
No comments:
Post a Comment